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Investigating 2 by 2 matrices — part |l

Freyja Hreinsdottir

University of Iceland

1 Introduction

This chapter is a continuation of the study in Investigating 2 by 2 matrices — part 1. We utilize the
possibility of having two graphics windows in GeoGebra 4.0 to investigate the effects of
transformations from the plane to the plane. Here we focus on the different types of transformations
i.e. shears, rotations, reflections and compressions/expansions, contractions/dilations. For technical
details concerning the use of GeoGebra see part 1.

In the last two sections we study more advanced topics, i.e. eigenvalues and maps from the complex
numbers to the complex numbers.

2 The unit square and the effect of linear transformations

We are going to study linear transformations through their effect on the unit square. We start by

creating a worksheet with both graphics views open, define 4 sliders a, b, ¢ and d and the matrix
.

M= (Ccl Z) We use the polygonal tool «* to create a unit square in Graphics view 1 and the

command ApplyMatrix to get its image under the linear transformation defined by M.
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Fig. 1 The image of the unit square under the transformation defined by the matrix M.
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Task: Create the worksheet above.

We are going to use this to study the matrices of certain transformations such as rotations, reflections
etc. Some of these are given by tools in GeoGebra as seen below:

tions Tools Window Help
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e Select object to reflect, then liy
Reﬂect Object about Line 4
_° Reflect Object about Point

.k Reflect Object about Circle

:. « Rotate Object around Point by Angle 3.8
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o ® Dilate Object from Point by Factor

‘ 25

Fig. 2 Built in transformations in GeoGebra.

Task: Use the dilation tool E| to dilate the unit square by factor 2. Change the values of the sliders
until the image of the matrix transformation is the same as the dilated unit square. You may want to
move objects between Graphics views 1 and 2, this is done by opening Object Properties and then the
tab advanced.

Task: Use the rotation tool, D to rotate the unit square 45°. Move the rotated square to Graphics 2.
It might be informative to show the image in both views. Now change the values of the sliders
defining the matrix until the image under the matrix transformation is identical to that under the
rotation with the rotational tool.

Task: Draw a line through (0, 0) and (1, 1) and use the reflection tool '\ to reflect the unit square in
this line. It will reflect into the unit square again but the corner point (1, 0) is reflected to (0, 1) and
vice versa. Find the matrix that gives this reflection.
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Fig. 3 The unit square rotated 45° and its image under the transformation defined by M.
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3 Shears and compressions

The linear transformation given by a matrix of the form ((1) 11{) (or (lt (1)) ) is called a shear in the

x-direction with factor k (or a shear in the y-direction with factor k).

Task: Make a worksheet with both graphics views open and define the unit square in Graphics 1.
Define a slider £ and the matrices above. Apply the matrices to the unit square and observe the effect
of changing the value of £&. What is the area of the image?
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Fig. 4 The image of the unit square under a shear by factor 1 in the x-direction.

Task: Repeat the task above for compressions and expansions in the x and y directions. These are

matrices given by (I(; (1)) and ((1) 2)

o2 o .
We can import photographs into GeoGebra using the tool | #™. After this is done and corner points
have been fixed we can use the command ApplyMatrix[matrix, picture] to apply transformations to
photographs.

Fig. 5 Photograph from Wikipedia Commons,
http://en.wikipedia.org/wiki/File:Carl Friedrich Gauss.jpg

Task: Try this out with your favorite photograph.
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4 Exercises

Create a worksheet with both graphics views open. Define a matrix M = ((cl Z) using four sliders a,

b, ¢ and d and create the unit square in Graphics view 1. Mark the corner points are 4, B, C and D.
Apply the matrix to the square and make its image appear in Graphics view 2. Use the sliders to solve
the following exercises from [1] (page 293).

Find the matrix for each of the transformations given below. Compute the determinant of the matrices,
either by hand or by using the command Determinant in GeoGebra, and compare the result with the
area of the image in Graphics view 2.

. . 1
a) Contraction with factor -

L o . 1
b) Compression in the x-direction with factor T

¢) Expansion in the y - direction with factor 6.
d) Shear in the x — direction with factor 3.

e) Dilation with factor 5.

f) Expansion in the x — direction with factor 3.

L L . 1
g) Compression in the y — direction with factor -

h) Shear in the y — direction with factor 2.

Describe the geometric effect of the transformation defined by the given matrices:

L 1 1 V3

V2 V2 T2 2 3 0 1 0
2) -1 _t b) Vi1 ©) (0 1) d) (3 1)

vz V2 2 2

Compute the determinant of the matrices in a) and b).

5 Compositions of transformations

If T and S are linear transformations R?> — R? then the composition of S and 7 is the transformation
SoT =S8 ( T(u)) where u is an element in R?. If N is the matrix of S and M is the matrix of 7 then
the matrix of the composite transformation is NM, that is the product of the two matrices.

To visualize this it would be nice to have 3 graphics views but this is not possible in the current
version of GeoGebra.

We define two matrices, N and M, using 8 sliders and apply those to the unit square such that the
images appears in Graphics view 1. We then apply the matrix M to the image of the unit square under
the transformation given by N and make that image appear in Graphics view 2. We do similarly with
the order of the matrices reversed.
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Fig. 6 Compositions of transformations: in Grapics view 1 we have that usq is the unit square, rusq is
its image under the transformation defined by N and susq under the transformation defined by M.

We see that the images, in Graphics 2, of the unit square under the composite transformations MN and
NM are not the same. In the algebra view we can see that the two products MN and NM are not the
same.

Task: Construct the worksheet above. Experiment with the sliders. Are there any values of the sliders
that give the same images in Graphics 2?

We see from the above that there are many possibilities of composing the simple linear transform-
ations we have studied. Conversely, one might ask if it is possible to write any transformation as a
composition of the simple ones? This is indeed the case as the following theorem states [1]:

Theorem 6.4.4 If A is an invertible matrix, then the corresponding linear operator on R? is a
composition of shears, compressions, and expansions in the directions of the coordinate axes, and
reflections about the coordinate axes and about the line y = x. (p. 311)

We consider the matrix L = (i (1)

mentioned in the theorem above.

) and try to write it as a composition of the transformations
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Fig. 7 The image of the unit square under the transformation defined by the matrix L. Marked in red is
the point B’ which is the image of the point B.

From the picture the transformation appears to be a shear in the x — direction with factor 2. However if
we apply such a shear to the unit square we get the image below.
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Fig. 8 Marked in red is the vertex D; which is the image of D.

This is the same parallelogram as before but some of the vertices are not the same, e.g. the vertex in
the upper left corner is the image of the vertex D but in the former picture we saw that it was the
image of the vertex B. So it seems that we need to switch the points D and B before applying the shear
transformation which is exactly what a reflection in the line x = y would give us. We therefore

define the matrix N = ((i 3), which is a reflection in the line x = y and apply it before applying
the shear.
2 2
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Fig. 9 The matrix N is applied to the unit square (usq), this gives the unit square rusq which we then
apply M to and get the parallelogram (srusq).
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The parallelogram above is exactly the parallelogram we get when we apply the matrix L. We can now
use matrix multiplication to verify that M*N = L.

1 -3 e
4 6 ) and write it

as a composition of compressions, expansions, reflections and shears. We solve this algebraically by
using elementary row operations as demonstrated below:
1 -3 10
o ) =0 )

SR

Arrow 1: we multiply the first row by 4 and subtract from the second row. This is amounts to

1 0 .
_4 1) so the second matrix is E; L.

Arrow 2: divide the second row by 18 which is the same as multiplying by the elementary matrix

1 0
E;, = <0 i) so the third matrix is E,E; L.
18

For more complicated matrices this is not so easy. We consider the matrix L = (

multiplying the matrix L by the elementary matrix E; = (

Arrow 3: multiply the second row by 3 and add it to the first row which is the same as multiplying by

the elementary matrix E3 = ((1) i)

) _ oip-1p-1_ (1 0y /1 0N/l =3\ ,.. .
We thus have: E3E,E1L =1 so L= E{ " E; ' E5" = (4 1) (0 18) (0 1 )Whlch gives that
the transformation defined by L is composed of:
* A shear in the negative x — direction with factor 3
*  An expansion in the y — direction by a factor 18

* A shear in the y — direction with factor 4.
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Fig. 10 The transformation L given as a composition of simple transformations.
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6 Eigenvalues and eigenvectors

We begin by stating the definition of an eigenvector and an eigenvalue ([1], page 211):

If A is an nXn matrix, then a scalar A is called an eigenvalue of A4 if there is a nonzero vector x such
that Ax = Ax. If A is an eigenvalue of 4, then every nonzero vector x such that Ax = Ax is called an
eigenvector of A corresponding to A.

We now demonstrate how we can visualize eigenvectors of 2 by 2 matrices in GeoGebra. We create a
worksheet with a matrix M = (Ccl Z) where a, b, ¢ and d are sliders like before. We use the circle

tool to create the unit circle and the point tool to get a point C on the unit circle. We use the line tool to
define a line f'through (0,0) and C. We then use the command ApplyMatrix[M, f] to get the image f” of
the line funder the transformation and ApplyMatrix[M, C] to get the image of C. Everything is now
taking place in Graphics 1 so we therefore choose different colors (red and blue) for the two lines to
distinguish them. We now use the moving tool to move the point C along the unit circle. This moves
both the red and the blue lines.

4 3 2 1 y 1 2 3 4
o

Fig. 11 The blue line is the image of the red line.

T

C'=(1.41,1.42)

_ (02
M*(z 0)/ C=(071,071)
0
2 1 y1 2 3
-1

Fig. 12 OC is an eigenvector of the linear transformation.

When the two lines coincide we have that the vector OC is mapped to a scalar multiple of itself so we
have an eigenvector. To find the eigenvalue we divide the length of OC’ by the length of OC.

Task: Create the worksheet described above and test this for the matrices given in the exercises earlier.
Do shears and rotations have any eigenvectors?
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7 Complex transformations

We can study maps from C, the complex numbers, to C using similar methods as were shown in
Investigating 2 by 2 matrices — part I to study (non-linear) transformations from R?to R?. For
instance, say we want to study the map

7+2

z—1'
We open a worksheet with two graphics windows and define a line and a point £, on the line. We right
click on F to open Object Properties and under the tab Algebra we select Complex Number.

We then click on Graphics 2 and write z = (F + 2)/(F - 1) in the input field. We right click on z and
put Trace on and then we move F along the line.
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Algebra UM |Graphics UE |Graphics 2 LEE
= Free Objects 6 6
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@ F = -2.88 - 4.46i
O G =0.67 - 0.7'5i 5 )
OH=0.6+0.2i
9 a:-5.16x +3.34y = 0 1
Oa = 1
Oh=1 0
Ocrxt+y?=1 -4 -3 -2 -1 0 1 2 3 4 -4 -3 2 3 4
od=1 g
Oe=1
o poly1 =1 5
~®z=0.67 +0.38i )
Complex Numberz: (F + 2) f (F- 1) 3
4 4
F
Input: )
. . z+2
Fig. 13 Image of a line under the complex map z — Y

We then also define points on the unit circle and on the unit square, define their values in Graphics 2
using the same definition as before. Below the traces of this are shown.
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Fig. 14 The image of a line, a circle and the boundary of the unit square under the complex map
Z+2

z-1

Task: Investigate the complex maps by the methods above

a) z — E
zZ+1

b) z — z?

1
c) z > z+-
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